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I. PROBLEM CONTEXT

In the context of quantum communications and quantum key distribution, it is important to be
able to verify that two parties share non-local resources, that is, a means of generating joint statistics
that could not have been achieved by local (independent) behaviour. If no classical signalling is
allowed between two parties producing such statistics, one may conclude that the two parties share
some form of non-locallity.

Such verification methods may be phrased as a game: two players, Alice and Bob, receive inputs
from a verifier, and must reply with some outputs. The players are not allowed to communicate
classically, and we will carry the assumption that they do not do so from now onwards. If the players
can conjointly generate non-local statistics, they win the game.

In this context, it becomes relevant to characterize both the statistics resulting from local behaviour,
as well as the “non-locallity classes”, that is, the different families of non-local statistics possible to
generate when Alice and Bob share non-locallity.

As an example, take the Clauser-Horne-Shimony-Holt game, where there are two inputs and two
outputs for each player; inputs take values {0,1} and outputs take values {—1,1}. Denote a, the
output of Alice when given input x, and likewise b, for Bob. If the verifier computes the score
function

S = <a0b0> + <a0b1> + <a1b0> — <a1b1> (1)

where (-) denotes statistical average over multiple rounds of input and output, then one may show
that players playing locally are bound to produce

-2 < Slocal < 2. (2)

A violation of this inequality (in either direction) denotes, as previously said, that the players
share a form of non-locallity. Furthermore, even though there are, strictly speaking, two inequalities,
they are clearly dual to one another. Take Plog, 0p | %4, %p] to mean “the probability of observing
outputs o, and oy for Alice and Bob, respectively, when given as respective inputs i, and i;.” We
may rephrase inequality as

Cp > 1 (3)

where C is a 1 x 8 matrix of coefficients, p is a vector of 8 probabilities, and [ is a single-entry
vector. Why isn’t p of dimension 2* (i.e. of all probabilities P[0, 0p | ia,1s])? Because this would be
redundant, as a smaller set of joint and marginal probability distributions is sufficient to describe
local behaviour [I] (a notion to be revisited shortly). We may fix a standard ordering for the
components of p. Letting

E[Oa”a} = Z Ploa, 0p | ia; is] (4)
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and likewise Pp[op|45) be the marginal probabilities for Alice and Bob, we consider the order of the
probabilities in p to be first the joint probabilities of Alice and Bob, then the marginal probabilities
for Alice, and finally the marginal probabilities for Bob. In the present case, we have

P [—-1,—1]0 0]
IP[ 1,—1|O71]
P [ -1, 111,0]
(P 1, 1|1 1]
P=1Pa [ -1 10 ] (5)
Pa | 1 |1 ]
Pp [ — 1 | 0 ]
Pp | 1 |1 ]

and so also we have
Cz(—l -1 —111010) (6)
= (—1) . (7)

The considerations above can, now, be generalized. Instead of considering two inputs and two
outputs for Alice and Bob, one may consider m 4, M 4 inputs and outputs for Alice, and mpg, Mp
inputs and outputs for Bob. This results in a more sophisticated characterization, where multiple
classes of non-locallity appear. Equivalently, in this generalized setting, the possible statistics of the
game as played by local players are no longer described by a single inequality (as was the case for
eq. )7 but rather by multiple nonequivalent inequalities.

In fact, already in the above case, one could have derived multiple quantities violated in the
presence of non-local behaviour, corresponding to multiple inequalities. In other words, C' and [
could have taken values

-1 -1-11 1 0 1 0

1 -1 1 1 0 —-1-10

11 -1-10 1 1 0

1 1 -1 1 =10 0 -1
C=14911-11 0 0 1] (8)

11 1 1 0 -1 0 -1

1 1 1 -1 -10 -10

1 -1 -1-10 1 0 1

I=(-10-10-100 -1)".

9)

However, all of these inequalities can be obtained from each other by one of two symmetries:
relabelling of inputs, or relabelling of outputs conditioned on inputs. Naturally, for a verifier to
certify the sharing of non-local resources between two players that receive and return the same
number of inputs and outputs, it does not matter whether it considers the first player to be Alice or
Bob (and vice versa for the second player). Therefore, any inequality that can be obtained from
another by permutation of the labels of the players is equivalent to it. Likewise, assigning different
labels to the inputs and outputs that can be given to and from Alice and Bob does not fundamentally
change the inequalities, i.e., when a player receives a certain input, they are free to permute the
labels of the corresponding output (conditioned to the input) without changing the nature of the
non-locality test (as long as this permutation is carried out consistently throughout the test). We
can summarize this as follows: if there is some inequality for input and output labels a, b, z, y

Ia,b,x,y (10)



then a choice of permutations m (), ma(y), m3(a|z), m4(b|y) yields equivalent inequalities

Ia,b,wl(z),ﬂ'2(y)’ and (11)
I (12)

Returning to the generalization of these non-local games, one may examine the set of joint
probability distributions for the inputs and outputs of local players, and conclude it is a polytope
in a space of dimension D = (my — 1)Ma(mp — 1)Mp + Ma(ma — 1) + Mp(mp — 1), the “local
polytope” [2, section 2.5] E”ﬂ Considering that a polytope is a generalization of the notion of a
solid of flat faces to D dimensions, we have that each “face” of the local polytope corresponds to
an inequality and defines a bound to be violated by non-local players (easy to understand in light
of the previous analysis where there was only one such “face”). On the other hand, it is easy to
generate a list of vertices of this polytope: consider the possible non-signalling and deterministic
distributions. A distribution is said to be non-signalling if the statistics of one player is independent
of the other, in the following sense:

s(alz),ma(bly)my-

for some g, 04 Zob Ploa, 0p |ia, i) = Zob Plog, 0b | ia, i3] for all iy, 7, (13)
for some iy, op >0, Ploa, 06 |ia,in] = 32, Ploa, op | g, ib] for all i, 1, (14)

and a deterministic process is one for which the marginals take values only 0 or 1. The resulting set
of distributions form the set of vertices of the local polytope, as any other local process results from
a convex combination of these local deterministic processes [3].

Converting between a vertex representation and a facet representation, which is its dual form, is
an NP-complete problem. Per the discussion above, however, we are most interested in the facet
representation. For this reason, significant effort has been made to tackle concrete instances of the
problem [2, [4]. The result is that this stage (of converting between the vertex representation and
the facet/half-space representation) is not the bottleneck of finding classes of non-locallity for a
given choice of (ma, Ma,mp, Mpg). Instead, due to the large amount of inequalities produced, the
bottleneck is the previously discussed identification of equivalences, in order to determine the unique
classes of non-locallity for that non-local game.

II. PROBLEM STATEMENT

Input: ma, M, mp, Mpg, the number of inputs and outputs for Alice and Bob, respectively.
The extended matrix (C'|1), given as a text file.

Output: The nonequivalent row entries of C.

The order of the symbolic entries of p for a particular (m,, mp, M, Mp) is known and given,
namely

p= (IP’[O,O|O70]7...,IP’[mA—27mB—2|MA—1,MB—1],

P[0[0],..., Blma — 2| M — 1, P[0]0],...., Blmp — 2| Mg _1]) . (15)

1 Assuming that the number of possible outputs is the same regardless of the input received for both players.
2 The previous remark that 8 probabilities sufficed is now justified by taking ma = mp = My = Mp = 2.



The main challenge of the problem is throughput. There are m 4! permutations of Alice’s input
labels, mp! permutations of Bob’s input labels, ma(M4!) permutations of Alice’s output labels
conditioned on input, and mp(Mp)! permutations of Bob’s output labels conditioned on input.
However, even this does not dominate the size of the problem, which is mainly fixed by the number
of inequalities produced in the half-space description of the polytope. Although the scaling relation
of the number of faces of the polytope with the number of inputs and outputs is not known, we have
that, for example, for (ma,mp, Ma, Mp) = (3,3,3,3), the local polytope is described by ~ 108
inequalities.

There is no known algorithm for this problem other than brute-force checking.

C + {inequalities}

I+ {}

For inequality Iop 5, in C:
seen < False

For each input permutation 7y, mo:

For each output permutation conditioned on input s, m4:
o’ mi(z), y' < m(y), d + m3ala’), b« ma(b]y).
If I,y 00y is in I, set seen to True.

If seen is False, insert I, 4 4, into 1.

Output 1.
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