
Survey on quantum circuit simulators

Miguel Murça
Instituto Superior Técnico, University of Lisbon, Portugal

(Dated: July 18, 2023)

In this survey, we review some of the main techniques for simulating a quantum computation on
a classical computer, as well as some of the publicly available simulation software.

I. INTRODUCTION

II. QUANTUM COMPUTATION
FUNDAMENTALS

A. State vector

Quantum computation is the field of study concerned
with computation performed within the postulates im-
posed by the theory of quantum mechanics. The notion
of “computation”, as here used, is the same as in the field
of (classical) computability and complexity theory, and
so we refer to, for example, Ref. [1] for a formal overview
of the topic. However, for simplicity, computation can be
taken to mean the evaluation of some function over some
discrete input range. In any case, this function (or, more
generally, the computational task at hand) will be made
concrete in context.

The postulates of quantum mechanics, on the other
hand, are well defined and may succinctly be stated as
follows [2]:

State space: An isolated quantum system is repre-
sented by a ray of unit two-norm vectors in a com-
plex vector space equipped with an inner product
(i.e., a Hilbert space). This space is referred to as
the state space.

Evolution: The evolution of an isolated quantum sys-

tem, as represented by its quantum state vector ψ⃗,
is given by a unitary operator acting on that quan-
tum state vector. I.e., let H be the Hilbert space
such that the quantum state vector is, at some

moment, ψ⃗ ∈ H. Then, there exists an operator
U ∈ H×H, satisfying UU† = U†U = I 1 such that,
after some time, the state of the system is given by

the quantum state vector Uψ⃗.

Measurement: A set of operators {Mm}m, acting on
H and satisfying

∑
mM

†
mMm = I, define a “mea-

surement”. Each operator Mm has an associated
outcome m, such that the measurement operation

yields outcome m with probability ∥Mmψ⃗∥22. After
the measurement, the quantum system is described

by the quantum state vector Mmψ⃗/∥Mmψ⃗∥ 2.

1 The dagger symbol (†) is used to denote conjugate transposition.

Composite Systems: If a quantum system is com-
posed of multiple quantum subsystems, then the
corresponding state vector space is given by the
tensor product of the quantum state vector spaces
of the subsystems.

A quantum computation is, thus, a computation car-
ried out within these postulates. Taking the computa-
tional task to be a decision problem (i.e., a question to
which the computer should output a “yes” or “no” an-
swer), we may, without loss of generality, consider that
the final answer is produced by a final measurement (as
defined in the measurement postulate), with outcomes
“yes” (m = 1) or “no” (m = 0).
In the classical case, it is well known that a binary al-

phabet – the “bit” – is sufficient to perform computation
(in the sense that it requires only a logarithmic overhead
in comparison to a larger alphabet; see [3, Claim 1.5]).
To perform quantum computation, we will likewise work
with a quantum analogue of the bit, the “qubit”. In par-
ticular, a qubit is a quantum state of a Hilbert space of
dimension 2, H2. For concreteness, we choose two quan-
tum state vectors of H2 that are orthogonal,

|0⟩ , |1⟩ (1)

and that thus form a basis of H2, the “computational ba-
sis”. We’ve also here introduced the so-called “Dirac no-
tation”, or “bra-ket notation”, common in quantum me-
chanics, and by extension in quantum computing works.
We present a summary of Dirac notation in Table I, and
we will henceforth use this notation.
In analogy to how, in the classical case, a binary alpha-

bet can represent larger alphabets, multiple qubits can
be used to span a larger Hilbert space, by the composite
systems postulate. Indeed, n qubits span 2n orthogonal
states in their collective state space, which we may label
by the binary string given by each of the qubits, or the
corresponding number:

|0⟩|0⟩. . .|0⟩|0⟩ ≡ |0b⟩,
|0⟩|0⟩. . .|0⟩|1⟩ ≡ |1b⟩,
|0⟩|0⟩. . .|1⟩|0⟩ ≡ |2b⟩,
. . .

|1⟩|1⟩. . .|1⟩|1⟩ ≡ |2n − 1b⟩.

(2)

Where it is clear in context (for example, if a ket is
labeled with a value other than 0 or 1), we may drop the
subscript b.

2

|ψ⟩ Vector ψ, or “ket” ψ. Corresponds to ψ⃗.

⟨ψ| Dual of |ψ⟩, or “bra” ψ. Corresponds to ψ⃗†.

⟨a|b⟩ Inner product between vectors |a⟩ and |b⟩.

|a⟩ ⊗ |b⟩ Tensor product between vectors |a⟩ and |b⟩.
If both |a⟩ , |b⟩ ∈ Hn, |a⟩ ⊗ |b⟩ ∈ Hn2 .

|a⟩|b⟩ Shortened notation for |a⟩ ⊗ |b⟩.

⟨a|A |b⟩ Inner product between |a⟩ and A |b⟩, or,
equivalently, A† |a⟩ and |b⟩.
If |a⟩ = |b⟩, may be referred to as the

expectation value of A under |a⟩.

|a⟩⟨a| Projector onto the span of |a⟩.

Table I. Summary of “Dirac notation”, or “bra-ket notation”.

Per the state space postulate, a state of n qubits may
be given by a linear combination of these basis states:

|ψ⟩ =
2n−1∑
j=0

αj |jb⟩

αj ∈ C,
∑2n−1
j=0 |αj |2 = 1

(3)

If more than one αj is non-zero, we say the state is in
“superposition”. Measuring a state in superposition pro-
duces different outcomes, depending on the state’s over-
lap with the outcome state. To see this, consider the
measurement

{Mm = |mb⟩⟨mb| m = 0, . . . , 2n − 1}. (4)

Since every |jb⟩ has unit norm, and {|jb⟩}j=0,...,2n−1

span the Hilbert space being considered, this set satisfies
the conditions outlined in the measurement postulate.
We conclude also from the postulate that the probability
of observing outcome j is given by

Pr
|ψ⟩

[j] = |αj |2. (5)

B. Density matrix

Consider the measurement (4) on state (3). After per-
forming such a measurement, one holds state |jb⟩ with
probability Pr|ψ⟩[j]. This is not correctly described by a
superposition. To see this, suppose a single qubit, and a
Hadamard gate:

H = 1√
2

(
1 1

1 −1

)
H |0⟩ = 1√

2
(|0⟩+ |1⟩)

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

(6)

From this definition and the previous discussion,

Pr
H|0⟩

[0] = Pr
H|1⟩

[0] = 1/2

Pr
H|0⟩

[1] = Pr
H|1⟩

[1] = 1/2
(7)

and we note that this is also true of the states

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

. (8)

We conclude from Eq. (7) that by taking a |0⟩ state,
applying a Hadamard gate, measuring, and again apply-
ing a Hadamard gate and measuring, we should observe 0
with probability 1/2, and likewise 1 with probability 1/2.
But, following the postulates and attempting to describe
the intermediate situation by either |+⟩ or |−⟩, we find
that

H |+⟩ = |0⟩
H |−⟩ = |1⟩

(9)

which would indicate either Pr[0] = 1 or Pr[1] = 1.
Indeed, the system may be described by one of sev-

eral states not in superposition, while we are uncertain
about which which state describes it. The density matrix
formalism (or density operator formalism) gives a formal
tool for describing this situation 2. If a quantum state is
in state |ψj⟩ with probability pj , the associated density
operator is

ρ =
∑
j

pj |ψj⟩⟨ψj | . (10)

In general, to be a valid density operator, ρ must have
unit trace and be a positive operator. In particular, the
density operator associated to a state vector |ψ⟩ is

ρ = |ψ⟩⟨ψ| , (11)

and a statistical mixture between multiple ρj with corre-
sponding probability pj is given by the density operator

ρ =
∑
j

pjρj . (12)

Density matrices are a “complete” formalism, in the
sense that we may rephrase the postulates of quantum
mechanics only in terms of the density matrix operator;
in fact one may check that the two sets of postulates are
equivalent.

2 Alternatively, the density matrix formalism allows one to express
both “quantum randomness”, as resulting from the measurement
of a state in superposition, and “classical randomness”, in the
sense of operations conditioned on a random/unknown bit string.

3

State space (Density matrix):
An isolated physical system is completely described
by a density operator, which is a positive operator
of unit trace in a Hilbert space. If a system is in
state ρj with probability pj , its density operator is
ρ =

∑
j pjρj .

Evolution (Density matrix):
Let a quantum system be described, at some mo-
ment, by the density operator ρ. Then, there exists
a unitary operator U such that, after some time,
the quantum system is now described by the den-
sity operator ρ′ = UρU†.

Measurement (Density matrix):
A set of operators {Mm}m, acting on the space of
ρ, and satisfying

∑
mM

†
mMm, define a “measure-

ment”. Each operator Mm has an outcome m as-
sociated to it. If a quantum state is described by a
density operator ρ, the outcome of a measurement
is m with probability Tr

(
M†
mMmρ

)
, and, after the

measurement, the system is now described by the
density matrix ρ′ =MmρM

†
m/Tr

(
M†
mMmρ

)
.

Composite Systems (Density matrix):
The density operator describing a quantum system
composed of multiple quantum subsystems is given
by the tensor product of the density operators of
each of the subsystems.

A quantum state with density matrix ρ for which there
exists

|ψ⟩ such that ρ = |ψ⟩⟨ψ| (13)

is said to be a pure state, while a state that cannot satisfy
this is said to be a mixed state.

A density operator may be used to describe a quan-
tum subsystem: if a system is composed of subsystems
A and B, jointly described by the density operator ρ,
then subsystem A is described by density operator

ρA = TrB(ρ) =
∑
j

(IA ⊗ ⟨j|B)ρ(IA ⊗ |j⟩B) (14)

where TrB is the newly defined partial trace operation,
IA is the identity in the state space of A, and we take
{|j⟩}j to be a basis over the state space of B.

C. Quantum circuits

To conclude this section, we introduce a common nota-
tion to denote unitary transformations, and by extension
quantum algorithms: quantum circuits.

Recall that a quantum computation may be described
by a sequence of unitary evolutions and measurements,
and a final measurement. While the measurements cor-
respond (by the measurement postulate) to a physical
procedure, it is not necessarily clear how to implement

Symbol Definition Description

X
X |0⟩ = |1⟩
X |1⟩ = |0⟩

X-Pauli or “not” gate

Y
Y |0⟩ = −i |1⟩
Y |1⟩ = i |0⟩

Y -Pauli gate

Z
Z |0⟩ = |0⟩
Z |1⟩ = − |1⟩

Z-Pauli gate

H
H |0⟩ =

√
1/2(|0⟩+ |1⟩)

H |1⟩ =
√

1/2(|0⟩ − |1⟩)
Hadamard gate

S
S |0⟩ = |0⟩
S |1⟩ = i |1⟩

Phase gate

T
T |0⟩ = |0⟩
T |1⟩ = eiπ/4 |1⟩

π/8 gate

RX(θ) exp{−iθX/2} X-rotation gate

RY (θ) exp{−iθY/2} Y -rotation gate

RZ(θ) exp{−iθZ/2} Z-rotation gate

CX |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X Controlled-not gate

Table II. Common “native” operations, often assumed to be
physically realizable, to be composed into other operations.

a given unitary transformation3. Instead, we assume the
ability to physically realize a number of elementary op-
erations, and compose these operations to build more so-
phisticated unitary evolutions. Table II lists some com-
mon basic operations. Critically, a limited set of these
elementary operations can be sufficient to express any
unitary evolution. I.e., the notion of a universal quan-
tum gate set is well defined. The set of gates specified in
Table II form a universal quantum gate set. One could
even reduce the size of this set while maintaining univer-
sality; for example, the set of {RX , RY , RZ ,CX} gates
is also universal [2]. A common choice of universal gate
set is the “Clifford+T” set, where the Clifford gate set,
{S,H,CX}, is augmented with the T gate. Note that the
Clifford gate set generates all the Pauli gates. The term
“Clifford group” is used to denote the set of all operations
generated by the Clifford gate set.
Quantum circuits provide a visual notation to denote

composition of elementary gates into larger unitary evo-
lutions and measurements. The main elements of a quan-
tum circuit are given in Table III. Assuming every oper-
ation in the elementary gate set can be performed in a
time step, it follows that the number of vertical slices in
a quantum circuit correspond to the running time of the

3 Rigorously, this depends on how the unitary is “given”. Here,
consider that a unitary is given by specifying its action over
each element |j⟩ of a set spanning the state space. By linearity
(viz. the evolution postulate), this determines the action of the
unitary over any vector in the state space.

4

circuit. This is referred to as the circuit’s depth. The
circuit’s width is the number of qubits acted upon non-
trivially by the circuit, and relates to the space require-
ments of the circuit.

Because a quantum algorithm corresponds to known
unitary evolutions and measurements, it is expressible in
quantum circuit form. We say, then, that a quantum al-
gorithm is efficient if the corresponding quantum circuit’s
width and depth scale at most polynomially with input
size.

III. SIMULATION TECHNIQUES

The quantum computational model, as introduced in
the previous section, is believed to be more powerful
than the classical computing model [4]. One canoni-
cal example of evidence for this separation is the exis-
tence of Shor’s Algorithm for efficient factoring [5, 6].
Thus, the task of classically simulating a quantum com-
putation becomes doubly significant: on the one hand,
an efficient classical algorithm to simulate an arbitrary
quantum computation would have a fundamental impact
in the current understanding of computational complex-
ity (but, for this reason, is not expected to exist). On
the other hand, it is necessary to ensure that a partic-
ular instance of a quantum circuit cannot be classically
simulated in practice in order to claim that a quantum
computation has been carried out “with advantage” (i.e.,
beyond a classical regime, or what is often referred to
as “quantum supremacy”) [7–10]. Finally, even in the
quantum advantage regime, small-scale classical simula-
tions remain relevant as a source of reference data for
validation [11].

As discussed in section IIA, a quantum state of n
qubits is determined by a vector of 2n complex values,
up to a global phase factor, and subject to a normal-
ization constraint. Therefore, on first approach, one may
believe that a quantum circuit of more than 40–45 qubits
cannot be classically simulated, simply due to the mem-
ory requirements of maintaining a quantum state vec-
tor. However, this consideration ignores the details of
any particular problem instance, such as the existence of
structure or constraints in the quantum circuit to be ran,
or specifications on the desired output. In this section,
we review some key theoretical results regarding classi-
cal simulation of quantum computations, as well as some
general techniques.

A. Strong simulation vs. weak simulation

As defined in section II, the final output of a quantum
computation results from a measurement. Due to the
nature of measurements, the outcome is a random vari-
able, and its distribution depends on the underlying state
vector before the measurement. Thus, should a classical
simulation of a quantum algorithm:

i. generate a random outcome observing the same
output distribution as the quantum counterpart,
or;

ii. explicitly specify the distribution of the generated
output?

These two problem specifications correspond, respec-
tively, to the notions of weak simulation and strong sim-
ulation. Requiring either strong or weak simulation may
significantly affect the computational hardness of the
task; indeed there exist circuits for which classical weak
simulation is easy, but classical strong simulation is hard
[12]. Stating these two notions more formally:

Definition 1 (Strong simulation [12]). Given a de-
scription of a quantum circuit of n qubits, which cor-
responds to unitary operator U , terminating with a mea-
surement of the first qubit in the computational basis,
output Tr

(
|0⟩⟨0| U |0b⟩⟨0b|U†).

Definition 2 (Weak simulation [12]). Given a descrip-
tion of a quantum circuit of n qubits, which corresponds
to unitary operator U , terminating with a measurement
of the first qubit in the comptuational basis, output 0 with
probability Tr

(
|0⟩⟨0| U |0b⟩⟨0b|U†), or 1 otherwise.

In practice, one may wish to simulate the circuit only
up to some point, or to inspect the intermediate state
of a small-scale computation [11, 13]. This motivates
a different definition of strong simulation by some au-
thors. Namely, recalling Eq. (3), note that knowledge of
αj is enough to determine the probability of observing
any measurement in the computational basis. However,
the converse is not true: because Pr[j] = |αj |2, knowl-
edge of Pr[j] fails to inform about the complex phase of
αj

4. So, strong simulation may be taken to mean:

Definition 3 (Strong simulation, wave-function version
[14]). Given a quantum circuit of n qubits, corresponding
to a unitary operator U , and an n-bit string j, output
⟨jb|U |0b⟩.

Note that, in all of the definitions above, we took the
quantum circuits to be described by a unitary operator,
which may not be trivially true if measurements are per-
formed half-way in the circuit (viz. section II B), or if
classical post-processing is employed. However, a well-
known result, which we review in appendix A, allows us
to defer all measurements to the end of the circuit, such
that the whole of the computation is carried out unitarily.

4 By the state space postulate, a global phase factor is physically
irrelevant. However, relative phase differences should not be
disregarded. As a simple example, consider the action of the
Hadamard gate (eqs. (7),(8)): the only difference between the
|+⟩ and |−⟩ states is the relative phase difference between the
|0⟩ and |1⟩ components – however, the result from acting with
the Hadamard gate is completely different.

5

Symbol Definition Description

Wire
Reperesents the state space associated to a qubit, i.e., H2. Multiple wires,
vertically aligned, represent the collective Hilbert space, given by the tensor
product of the individual H2 spaces (viz. the composite systems postulate).

A / Register
Represents multiple wires, i.e., a subspace of dimension 2n, where n is the
number of wires in the register. As shown, a register may be labelled.

U Gate
Unitary U acting on the state space associated to the incoming wire

(left-hand side). The outgoing wire (right-hand side) corresponds to the
state space after the action of the gate.

Measurement

Measurement of the state subspace associated to the incoming wire
(left-hand side), according to the measurement {(|0⟩⟨0| , 0), (|1⟩⟨1| , 1)}
(“computational basis measurement”). The double wire represents the

resulting classical bit (i.e., a Z2 space).

A •

B U
Controlled operation

Denotes the operation |0⟩⟨0|A ⊗ IB + |1⟩⟨1|A ⊗ UB acting on the collective
state space of A and B.

|ψ⟩ U Application

The quantum state resulting from application of the unitary represented by
the quantum circuit on the quantum state specified on the left-hand side.

The resulting state may be denoted on the right-hand side.
Here, represents the state U |ψ⟩.

/ V W Composition
Circuits are “read” left-to-right. Thus, the concatenation of two circuits
denoting the actions of operators, respectively, V and W , results in a

circuit denoting the operator WV .

Table III. Quantum circuit notation.

B. Clifford circuits and the Gottesman-Knill
theorem

Recall that Clifford gates are gates in the Clifford set,
i.e., any quantum circuit that can be written in terms
of phase, Hadamard, and Controlled-Not gates (viz. Ta-
ble II). Then, the Gottesman-Knill theorem states the
following:

Theorem 1 (Gottesman-Knill [15]). Every (uniform
family of) Clifford circuit(s), when applied to the input
state |0b⟩ ≡ |0⟩|0⟩ . . . |0⟩, and when followed by a com-
putational basis measurement of the first qubit, can be
efficiently simulated classically in the strong sense.

The theorem is constructive, and in Ref. [16] Gottes-
man and Aaronson provide a high-performance (weak)
simulator of Clifford circuits that can scale up to tens
of thousands of qubits. Van den Nest [12] gives an al-
ternative derivation of the theorem that allows for direct
strong simulation as well (both the regular and wave-
function version).

Despite this result, Clifford circuits very easily extend
to the universality regime: not only by augmentation of
the gate set – the Clifford+T gate set is already univer-
sal – but also by choice of the input state. Indeed, there
exist “magic states”, such that a supply of these (pre-

prepared) quantum states and Clifford operations are
enough to perform universal quantum computation [17].
Nonetheless, if Clifford gates dominate a non-Clifford cir-
cuit, this structure may be exploited to speed-up compu-
tation, by treating the simulation as a tensor network
where the calculation of certain tensors can be sped-up
[11] (viz. section III F).
This move from Clifford-based computation to quan-

tum universality entails a “jump”, since Clifford circuits
are not as powerful as classical circuits. In Ref. [12], this
computational gap is discussed and eliminated, by giv-
ing a superclass of Clifford circuits, “HT circuits”, that
is equivalent to classical computation and can be weakly
simulated.
Finally, note also that certain classes of efficiently sim-

ulatable circuits not discussed here, such as matchgate
circuits, may relate non-trivially with Clifford circuits
[18–20].

C. Schrödinger simulation

Schrödinger simulation refers to the straightforward
approach of maintaining the global state-vector, updat-
ing it as new unitary operations are encountered [21].
As such, it is inherently a form of the wave-function ver-

6

sion of strong simulation (definition 3). This method also
requires, by definition, that 2n complex values are main-
tained for a state of n qubits, such that it cannot phys-
ically scale beyond a certain number of qubits (about
45-50 qubits, corresponding to a petabyte or more of
memory, if each amplitude is represented within 8 bytes;
barring adaptative models admitting error, such as in
Ref. [21]).

Despite this constraint, a significant amount of re-
search has been devoted to Schrödinger simulation in
the memory-tractable regime (n ≲ 50), specifically in
pushing this limit and speeding up the running time
[9, 10, 13, 21–26].

A key observation is that, if each gate is considered at
a time, the matrix-vector products being calculated are
of very sparse and strongly structured matrices. Namely,
the gates are local, in the sense that they involve non-
trivially at most a small number k of qubits. For ex-
ample, in Ref. [9], this is used to ensure that compute
resources are maximally utilized via parallelization. Fol-
lowing a different strategy, in Ref. [13], advance knowl-
edge of the action of common blocks of operations in
quantum computing is used to speed up over the sim-
ulation of each gate individually. Gate fusion, different
encoding techniques and cache-related considerations, as
well as employment of compiler intrinsics, also allow for
speed improvements [9, 10, 13, 22, 23].

Otherwise, the problem may be regarded as a classical
large-sparse-matrix and vector product, a well-researched
problem (see, e.g., Ref. [27]).

D. Feynman simulation

The Feynman simulation method [14, 28, 29] trades
the 2n memory requirement by an exponential time com-
putation, but in linear space. Being also a form of the
wave-function version of strong simulation (definition 3),
the Feynman simulation method follows from noticing
the following:

⟨x|ULUL−1UL−2 · · ·U2U1 |0b⟩ =

= ⟨x|UL(Σ2n−1
j=0 |j⟩⟨j|)UL−1(Σ

2n−1
j′=0 |j′⟩⟨j′|)

UL−2 · · ·U2(Σ
2n−1
j′′=0 |j

′′⟩⟨j′′|)U1 |0b⟩ =

=
∑

{y(t)}∈{0,1,...,2n−1}L−1

L−1∏
t=0

〈
y(t+1)

∣∣Ut ∣∣y(t)〉
(15)

since {|jb⟩}j=0,...,2n−1 form an orthonormal basis of the
state vector space, and letting |y(L)⟩ ≡ |x⟩. Now, take
each of the Ut to be the (local, sparse) unitary corre-
sponding to a quantum gate in a quantum circuit, such
that L is the depth of the quantum circuit. One may
conclude this scheme requires O(n · (2d)n+1) time and
O(n log d) space [14].

Figure 1. The action of two Hadamard gates (eq. 6) acting
on a single qubit initialized to |0⟩, as a trivial example of in-
terference. Each node’s tone reflects the absolute value of the
associated amplitude: darker corresponds to greater ampli-
tude. The node with a negative amplitude is marked with a
(−). In a Feynman path integral interpretation (see section
IIID), each of the drawn paths is considered separately, and
then summed, resulting in the destructive interference of the
|1⟩ state.

This approach may be interpreted as a discrete version
of the Feynman path integral formulation, where, simply
put, every possible “computation path” (corresponding
to a choice of {y(t)}) is considered separately, in order
to determine the resulting constructive or destructive in-
terference between the paths; each path requires a lin-
ear amount of memory to compute, but there are expo-
nentially many paths to consider, which interfere among
themselves. This is illustrated in figure 1.
A further advantage of this method is that some of

the computational paths may be simply ignored, at the
expense of simulation fidelity. The computational advan-
tage of not having to compute these paths is sufficiently
expressive to allow for the simulation of real-world imple-
mentations thought to be impossible to simulate (match-
ing their fidelity) [10]. These considerations also apply
to the Schrödinger-Feynman method (section III E).

E. Schrödinger-Feynman simulation

It is possible to establish an intermediate scheme be-
tween Schrödinger simulation (section III C) and Feyn-
man simulation (section IIID) [14, 28, 30]. Thus, this
scheme, which allows for a controllable trade-off between
space and time complexity, is referred to by some authors
as Schrödinger-Feynman simulation [23, 28, 31].
The main idea of the technique is to divide the

quantum circuit into disjoint registers, performing
Schrödinger simulation for operations that involve only
qubits in the same register, but summing over “paths” re-
sulting from operations across registers. This allows the

7

computation to be distributed (across different choices of
computation paths for cross-register operations), while
maximally exploiting the memory available to each pro-
cess.

The choice of (maximum) size of the registers deter-
mines the memory consumption, with bigger sized reg-
isters requiring more memory but less computational
paths to consider. Thus, for at-most k-qubit sized reg-
isters in an n-qubit circuit of depth d, one requires
O(n2n−k · (2d)k+1) time, and O(2n−k log d) space [14].

This method is well suited for simulating circuits with
a grid-like connectivity graph between qubits, as is com-
mon in practical implementations [7, 32, 33], and so is
used in multiple works pushing the boundary of quan-
tum advantage, allowing for simulation of circuits with
significantly more than 50 qubits [9, 30, 34].

F. Tensor network simulation

Closely related to the Feynman simulation technique,
but generalizing the idea, tensor-network based simula-
tion regards quantum circuit simulation as a form of ten-
sor contraction [35–40].

Recall that a tensor is an object generalizing matrices:
a tensor has upper and lower (contra- and co-variant) in-
dices; its number of indices determines its rank, while the
values that each index may take determine the dimension
of the index5. A given choice of indices yields a compo-

nent of the tensor, e.g., T ijklm denotes the (i, j, k; l,m)th
component of the tensor T . A tensor T is of type (a, b)
if it has a contravariant indices and b covariant indices.
Two tensors may be contracted by summing over, re-
spectively, a contravariant and contravariant index of the
same dimension over the product of the two tensors. I.e.,
let M and N be two tensors of types (a, b) and (c, d),
with dimension d on each index. The tensor whose com-
ponents are given by

d∑
ik=1

M
i1...ik−1ikik+1...ia
j1...jb

Nk1...kc
l1...lk−1iklk+1···ld

is an (a+ c− 1, b+ d− 1)-type tensor.
Now, it is possible to represent a quantum state of n

qubits by an n-rank tensor, where each index has dimen-
sion 2:

ψi1i2...in ↔

|ψ⟩ =
∑

i1,...,in=0,1

ψi1...in |i1⟩ · · · |in⟩ (16)

It follows that likewise any quantum operation involv-
ing k qubits is given by a (k, k)-type tensor, and the

5 Terminology regarding tensors is not always consistent across
works. For example, the terms way, order, degree, or dimension
may be used instead of rank [41–44].

quantum state vector after the operation is given by a
tensor contraction. E.g.,

|ϕ⟩ = G |ψ⟩ ↔

ϕi
′
a...i

′
kik+1...in =

∑
ia...ik=0,1

G
i′a...i

′
k

ia...ik
ψia...ikik+1...in (17)

where we have, for simplicity of notation, taken the ac-
tion of the gate G to be on the first k qubits.

Therefore, it is possible to represent a quantum circuit
acting on an input state as a sequence of tensor products
and contractions. The network of contractions of the
multiple tensors is designated by tensor network. The
result of the contraction will be a vector (rank-1 tensor),
the components of which are the entries in the state vec-
tor resulting from the action of the quantum circuit in the
input state. Therefore, contracting the tensor network
in this manner yields a wave-function strong simulation
method (definition 3). However, it is also possible to fix
a final projector, i.e., calculate the contraction respecting
to the tensor

⟨x|U |0b⟩ =
∑

i1,...,in=0,1

xi1...in U
i1...in
0,0,...,0 (18)

for a computational basis state |x⟩, and where U is the
tensor corresponding to the action of the quantum cir-
cuit. In this case, the result of the contraction is a single
complex amplitude (a rank-0 tensor), making it suitable
for strong or weak simulation (defs. 1,2). Fixing a fi-
nal projector allows for a different contraction order, and
may greatly improve the efficiency of the simulation [45].

Depending on how the tensor network is contracted,
the memory and time necessary to respectively keep
track of the tensor and contract it may vary dramati-
cally [46]. Thus, optimizing the procedure of finding the
optimal contraction ordering, known to be a computa-
tionally hard task in its generality, is a central research
topic [38, 47–52]. Nonetheless, when obtaining the state
vector, one may upper bound the time complexity of the
contraction as TO(1) exp[O(qD)], where T is the total
number of gates in the circuit, q is the maximum number
of adjacent qubits involved in a single operation, andD is
the depth of the circuit [36]. Note how the time complex-
ity grows exponentially with the depth of the circuit; this
motivated the increase of depth in “quantum supremacy”
experiments, though other characteristics, like qubit con-
nectivity or better contraction orderings, may still allow
for tensor-based simulation [48, 53, 54].

Finally, we note the method of decision diagrams [55–
60]. Developed in parallel to tensor methods, decision
diagrams are similar to tensor networks, but with less re-
dundancy. This entails both advantages and drawbacks,
and we refer to Ref. [45] for a comparison of the two
methods.

8

G. Noise simulation

In the previous subsections, we have considered simu-
lation of “perfect” quantum circuits, i.e., circuits that do
not simulate the presence of noise (even though they may
consider the presence of noise to speed-up the simulation,
such as in [10]). However, the presence of noise is prac-
tically unavoidable in current experimental settings [61].
Therefore, it may be useful to simulate a noisy quantum
circuit.

Typically, the density matrix formalism (viz. section
II B) is used to describe the quantum state resulting from
a quantum circuit affected by noise, by modelling the ef-
fects of noise as quantum channels, i.e., completely posi-
tive, convex-linear, non-trace-increasing maps on density
matrices6[2]. These channels, in turn, reflect physical
equational models of noise [62].

While, for example, tensor-based simulation (section
III F) naturally extends to density matrix simulation [36],
it may seem that the overhead of maintaining a density
matrix while employing Schrödinger or Feynman simu-
lation would be impeditive. However, it turns out that
the effect of the usual noise channels can be rephrased
as the statistical average of random, non-unitary gates
in a quantum circuit [63]. Therefore, with an overhead
due to repeating the simulation multiple times to col-
lect statistics, it is possible to extend also the pure-state
based methods to simulate noise.

IV. SIMULATION SOFTWARE

In this section we examine some of the publicly avail-
able software for simulating quantum circuits. It is im-
portant to note that we do not claim to be exhaus-
tive in the number of simulators considered, nor on the
benchmarking the considered solutions. The large and
growing number of quantum circuit simulators available,
and the different possible goals for such software (e.g.,
small-scale vs. supremacy-scale simulation), would make
it impossible for a complete and even comparison. Thus,
we focused on a subset of offline, small-scale, industry-
recognized simulators, such as those that a researcher
might use to validate their algorithms in toy-settings us-
ing their laptop.

A. Methodology

We began with the 3 most popular (at the time of
writing) quantum circuit simulators under the Github

6 For the reader unfamiliar with quantum channels, they may re-
gard them as a generalization of measurements in the mixed state
formulation.

“quantum-computing” tag7. Then, we considered simu-
lators for which Qiskit or Cirq provided backend inter-
face. For providers of quantum hardware interfacing with
Qiskit, we considered the provider’s simulation solution,
if it existed. We then proceeded to traverse the reference
graph of the simulator’s reference publications, gathering
a total of 20 simulators. A graph outlining the citation
chains followed is given in figure 2.

Figure 2. Graph illustrating the citation chains followed to
enumerate the simulators considered.

B. Simulators

1. Cirq (internal/qsim/qsimh simulators)

Cirq [64] is Google’s solution for quantum circuit re-
lated tasks, from design to real-world execution. Be-
sides third-party backends (see sections IVB4,IVB5),
Cirq contains three separate simulators: the built-in
Python simulator [65], qsim, and qsimh [66]. The built-
in Python simulator performs Schrödinger-based simula-
tion (thus, maintains the state vector) using a Numpy
[67] sparse-matrix representation, and is meant for test-
ing small circuits. qsim and qsimh, in contrast, are
Google’s optimized and high-performance simulation so-
lutions. Both are written in C++, and are, respectively, a
Schrödinger and a Schrödinger-Feynman simulator (viz.
sections III C,III E). qsim and qsimh employ gate fusion,
vectorized instructions and multi-threading for computa-
tional speed-up. qsimh supports trading computational
time by lower-fidelity simulation, as outlined in section
IIID. Both qsim and qsimh integrate with Cirq’s Python
interface.

7 As of July 16, 2023, the Github repositories for the Cirq, the
Microsoft Quantum, and the Qiskit simulators have, respectively,
3,823, 3,737, and 3,678 “stars”.

9

2. Microsoft Quantum

Microsoft’s “Quantum Development Kit” is a tool-
kit for quantum computation, including quantum circuit
simulation [68]. It is integrated with

3. Qiskit

4. qFlex

5. quimb

6. Rigetti Forest

7. NVIDIA cuStateVec

8. NVIDIA cuTensorNet

9. Amazon SV1

10. Amazon TN1

11. Amazon DM1

12. MQT/DDSIM

13. Intel Quantum Simulator

14. Xanadu’s Strawberry Fields

15. Pennylane Lightning

16. Qibo

17. QCGPU

18. Quantum++

Appendix A: Delayed measurement

The delayed measurement lemma states:

Lemma 1 (Delayed measurement [2]).

•

/ U

=
•

/ U

(A1)

i.e., measurements can always be moved from an inter-
mediate stage of a quantum circuit to the end of the
circuit, replacing conditional classical operations by con-
trolled quantum operations.

This statement may be proven by explicitly calculating
the density matrix resulting from the action of each cir-
cuit, for an arbitrary input, and checking that the result
is the same. It follows that, when speaking of a quan-
tum algorithm, one may always take the procedure to be
described by a unitary operation followed by measure-
ments.

10

[1] S. Homer and A. L. Selman, Computability and Complex-
ity Theory (Springer New York, 2001).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
2012).

[3] S. Arora and B. Barak, Computational Complexity: A
Modern Approach (Cambridge University Press, 2009).

[4] E. Bernstein and U. Vazirani, Quantum complexity the-
ory, in Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing - STOC '93 (ACM Press,
1993).

[5] P. Shor, Algorithms for quantum computation: discrete
logarithms and factoring, in Proceedings 35th Annual
Symposium on Foundations of Computer Science (IEEE
Comput. Soc. Press, 1994).

[6] A. Y. Kitaev, Quantum measurements and the abelian
stabilizer problem, arXiv:9511026 [quant-ph] (1995), un-
published.

[7] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti-
nis, Quantum supremacy using a programmable super-
conducting processor, Nature 574, 505 (2019).

[8] B. M. Terhal, Quantum supremacy, here we come, Nature
Physics 14, 530 (2018).

[9] T. Häner and D. S. Steiger, 0.5 petabyte simulation of
a 45-qubit quantum circuit, in Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (ACM, 2017).

[10] I. Markov, A. Fatima, S. Isakov, and S. Boixo, Quantum
supremacy is both closer and farther than it appears,
arXiv:1807.10749 [quant-ph] (2018), unpublished.

[11] S. Bravyi and D. Gosset, Improved classical simulation
of quantum circuits dominated by clifford gates, Physi-
cal Review Letters 116, 10.1103/physrevlett.116.250501
(2016).

[12] M. V. den Nest, Classical simulation of quantum compu-
tation, the gottesman-knill theorem, and slightly beyond,
Quantum Information and Computation 10, 258 (2010).

[13] T. Haner, D. S. Steiger, M. Smelyanskiy, and M. Troyer,
High performance emulation of quantum circuits, in
SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis (IEEE,
2016).

[14] S. Aaronson and L. Chen, Complexity-theoretic founda-
tions of quantum supremacy experiments, in Proceedings

of the 32nd Computational Complexity Conference, CCC
’17 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, DEU, 2017).

[15] S. Corney, R. Delbourgo, and P. Jarvis, Group22: Pro-
ceedings of the XXII International Colloquium on Group
Theoretical Methods in Physics, Hobart, July 13-17,
1998 , International Press lectures and conference pro-
ceedings in physics (International Press, 1999) pp. 32–43.

[16] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[17] S. Bravyi and A. Kitaev, Universal quantum computa-
tion with ideal clifford gates and noisy ancillas, Physical
Review A 71, 10.1103/physreva.71.022316 (2005).

[18] L. G. Valiant, Quantum circuits that can be simulated
classically in polynomial time, SIAM Journal on Com-
puting 31, 1229 (2002).

[19] R. Jozsa and A. Miyake, Matchgates and classical simu-
lation of quantum circuits, Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences
464, 3089 (2008).

[20] D. J. Brod, Efficient classical simulation of matchgate cir-
cuits with generalized inputs and measurements, Physical
Review A 93, 10.1103/physreva.93.062332 (2016).

[21] H. D. Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka,
N. Ito, S. Yuan, and K. Michielsen, Massively parallel
quantum computer simulator, eleven years later, Com-
puter Physics Communications 237, 47 (2019).

[22] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik,
qhipster: The quantum high performance software test-
ing environment, arXiv:1601.07195 [quant-ph] (2016),
unpublished.

[23] A. Fatima and I. L. Markov, Faster schrödinger-style sim-
ulation of quantum circuits, in 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA) (IEEE, 2021).

[24] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, QuEST
and high performance simulation of quantum computers,
Scientific Reports 9, 10.1038/s41598-019-47174-9 (2019).

[25] J. Niwa, K. Matsumoto, and H. Imai, General-purpose
parallel simulator for quantum computing, Physical Re-
view A 66, 10.1103/physreva.66.062317 (2002).

[26] H. D. Raedt and K. Michielsen, Handbook of Theoreti-
cal and Computational Nanotechnology, edited by M. Ri-
eth and W. Schommers (American Scientific Publishers,
2006) pp. 2–48.

[27] G. Xiao, C. Yin, T. Zhou, X. Li, Y. Chen, and K. Li,
A survey of accelerating parallel sparse linear algebra,
ACM Computing Surveys 10.1145/3604606 (2023).

[28] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven,
Simulation of low-depth quantum circuits as complex
undirected graphical models, arXiv:1712.05384 [quant-
ph] (2017), unpublished.

[29] E. Bernstein and U. Vazirani, Quantum complexity the-
ory, SIAM Journal on Computing 26, 1411 (1997).

[30] Z.-Y. Chen, Q. Zhou, C. Xue, X. Yang, G.-C. Guo, and
G.-P. Guo, 64-qubit quantum circuit simulation, Science
Bulletin 63, 964 (2018).

[31] L. Burgholzer, H. Bauer, and R. Wille, Hybrid
schrödinger-feynman simulation of quantum circuits with
decision diagrams, in 2021 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE)

https://doi.org/10.1007/978-1-4757-3544-4
https://doi.org/10.1007/978-1-4757-3544-4
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1017/cbo9780511976667
https://books.google.pt/books?id=8Wjqvsoo48MC
https://books.google.pt/books?id=8Wjqvsoo48MC
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1109/sfcs.1994.365700
https://doi.org/10.1109/sfcs.1994.365700
https://arxiv.org/abs/9511026
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41567-018-0131-y
https://doi.org/10.1038/s41567-018-0131-y
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://arxiv.org/abs/1807.10749
https://doi.org/10.1103/physrevlett.116.250501
https://doi.org/10.26421/qic10.3-4-6
https://doi.org/10.1109/sc.2016.73
https://doi.org/10.1109/sc.2016.73
https://books.google.pt/books?id=YPH4PgAACAAJ
https://books.google.pt/books?id=YPH4PgAACAAJ
https://books.google.pt/books?id=YPH4PgAACAAJ
https://books.google.pt/books?id=YPH4PgAACAAJ
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/physreva.71.022316
https://doi.org/10.1137/s0097539700377025
https://doi.org/10.1137/s0097539700377025
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1103/physreva.93.062332
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2018.11.005
https://arxiv.org/abs/1601.07195
https://doi.org/10.1109/hpca51647.2021.00026
https://doi.org/10.1109/hpca51647.2021.00026
https://doi.org/10.1109/hpca51647.2021.00026
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1103/physreva.66.062317
https://doi.org/10.1145/3604606
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1712.05384
https://doi.org/10.1137/s0097539796300921
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1109/qce52317.2021.00037
https://doi.org/10.1109/qce52317.2021.00037

11

(IEEE, 2021).
[32] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den

Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility of
quantum computing before fault tolerance, Nature 618,
500 (2023).

[33] M. Saffman, T. G. Walker, and K. Mølmer, Quantum
information with rydberg atoms, Reviews of Modern
Physics 82, 2313 (2010).

[34] R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, Quan-
tum supremacy circuit simulation on sunway taihulight,
arXiv:1804.04797 [quant-ph] (2018), unpublished.

[35] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Physical Review Letters 91,
10.1103/physrevlett.91.147902 (2003).

[36] I. L. Markov and Y. Shi, Simulating quantum computa-
tion by contracting tensor networks, SIAM Journal on
Computing 38, 963 (2008).

[37] A. McCaskey, E. Dumitrescu, M. Chen, D. Lyakh, and
T. Humble, Validating quantum-classical programming
models with tensor network simulations, PLOS ONE 13,
e0206704 (2018).

[38] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh,
T. Magerlein, E. Solomonik, E. W. Draeger, E. T.
Holland, and R. Wisnieff, Pareto-efficient quantum
circuit simulation using tensor contraction deferral,
arXiv:1710.05867v4 [quant-ph] (2020), unpublished.

[39] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel,
R. Biswas, and S. Mandrà, A flexible high-performance
simulator for verifying and benchmarking quantum cir-
cuits implemented on real hardware, npj Quantum Infor-
mation 5, 10.1038/s41534-019-0196-1 (2019).

[40] C. Guo, Y. Liu, M. Xiong, S. Xue, X. Fu, A. Huang,
X. Qiang, P. Xu, J. Liu, S. Zheng, H.-L. Huang, M. Deng,
D. Poletti, W.-S. Bao, and J. Wu, General-purpose
quantum circuit simulator with projected entangled-
pair states and the quantum supremacy frontier, Physi-
cal Review Letters 123, 10.1103/physrevlett.123.190501
(2019).

[41] A. Joshi, Matrices and Tensors in Physics (Wiley, 1995).
[42] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, A mul-

tilinear singular value decomposition, SIAM Journal on
Matrix Analysis and Applications 21, 1253 (2000).

[43] M. A. O. Vasilescu and D. Terzopoulos, Multilinear anal-
ysis of image ensembles: TensorFaces, in Computer Vi-
sion — ECCV 2002 (Springer Berlin Heidelberg, 2002)
pp. 447–460.

[44] T. G. Kolda and B. W. Bader, Tensor decompositions
and applications, SIAM Review 51, 455 (2009).

[45] L. Burgholzer, A. Ploier, and R. Wille, Tensor networks
or decision diagrams? guidelines for classical quantum
circuit simulation, arXiv:2302.06616 [quant-ph] (2023),
unpublished.

[46] D. Lykov, R. Schutski, A. Galda, V. Vinokur, and
Y. Alexeev, Tensor network quantum simulator with
step-dependent parallelization, in 2022 IEEE Interna-
tional Conference on Quantum Computing and Engineer-
ing (QCE) (IEEE, 2022).

[47] R. N. C. Pfeifer, J. Haegeman, and F. Verstraete,
Faster identification of optimal contraction sequences for
tensor networks, Physical Review E 90, 10.1103/phys-
reve.90.033315 (2014).

[48] J. Gray and S. Kourtis, Hyper-optimized tensor network
contraction, Quantum 5, 410 (2021).

[49] E. S. Fried, N. P. D. Sawaya, Y. Cao, I. D. Kivlichan,
J. Romero, and A. Aspuru-Guzik, qTorch: The quantum
tensor contraction handler, PLOS ONE 13, e0208510
(2018).

[50] F. Schindler and A. S. Jermyn, Algorithms for tensor
network contraction ordering, Machine Learning: Science
and Technology 1, 035001 (2020).

[51] C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, and I. Safro,
Constructing optimal contraction trees for tensor net-
work quantum circuit simulation, in 2022 IEEE High
Performance Extreme Computing Conference (HPEC)
(2022) pp. 1–8.

[52] L. Liang, J. Xu, L. Deng, M. Yan, X. Hu, Z. Zhang,
G. Li, and Y. Xie, Fast search of the optimal contraction
sequence in tensor networks, IEEE Journal of Selected
Topics in Signal Processing 15, 574 (2021).

[53] F. Pan and P. Zhang, Simulation of quantum cir-
cuits using the big-batch tensor network method, Physi-
cal Review Letters 128, 10.1103/physrevlett.128.030501
(2022).

[54] J. Tindall, M. Fishman, M. Stoudenmire, and D. Sels,
Efficient tensor network simulation of ibm’s kicked ising
experiment, arXiv:2306.14887 [quant-ph] (2023), unpub-
lished.

[55] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton,
and R. Drechsler, Qmdds: Efficient quantum function
representation and manipulation, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems 35, 86 (2016).

[56] C.-Y. Lu, S.-A. Wang, and S.-Y. Kuo, An extended xqdd
representation for multiple-valued quantum logic, IEEE
Transactions on Computers 60, 1377 (2011).

[57] A. Zulehner, S. Hillmich, and R. Wille, How to efficiently
handle complex values? implementing decision diagrams
for quantum computing, in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD)
(2019) pp. 1–7.

[58] G. Viamontes, I. Markov, and J. Hayes, High-
performance quidd-based simulation of quantum circuits,
in Proceedings Design, Automation and Test in Europe
Conference and Exhibition, Vol. 2 (2004) pp. 1354–1355
Vol.2.

[59] A. Zulehner and R. Wille, Matrix-vector vs. matrix-
matrix multiplication: Potential in dd-based simulation
of quantum computations, in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE) (2019)
pp. 90–95.

[60] L. Burgholzer and R. Wille, Advanced equivalence
checking for quantum circuits, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems 40, 1810 (2021).

[61] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[62] H. Breuer and F. Petruccione, The Theory of Open Quan-
tum Systems (Oxford University Press, 2002).

[63] A. Bassi and D.-A. Deckert, Noise gates for decoherent
quantum circuits, Physical Review A 77, 10.1103/phys-
reva.77.032323 (2008).

[64] Cirq Developers, Cirq (2022), See full
list of authors on Github: https://github
.com/quantumlib/Cirq/graphs/contributors.

[65] Cirq Developers, cirq.Simulator (2023), https:

//quantumai.google/reference/python/cirq/

Simulator.

https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1103/revmodphys.82.2313
https://doi.org/10.1103/revmodphys.82.2313
https://arxiv.org/abs/1804.04797
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1371/journal.pone.0206704
https://doi.org/10.1371/journal.pone.0206704
https://arxiv.org/abs/1710.05867v4
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1103/physrevlett.123.190501
https://books.google.co.ck/books?id=FesDylvUy00C
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1007/3-540-47969-4_30
https://doi.org/10.1007/3-540-47969-4_30
https://doi.org/10.1137/07070111x
https://arxiv.org/abs/2302.06616
https://doi.org/10.1109/qce53715.2022.00081
https://doi.org/10.1109/qce53715.2022.00081
https://doi.org/10.1109/qce53715.2022.00081
https://doi.org/10.1103/physreve.90.033315
https://doi.org/10.1103/physreve.90.033315
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1088/2632-2153/ab94c5
https://doi.org/10.1088/2632-2153/ab94c5
https://doi.org/10.1109/HPEC55821.2022.9926353
https://doi.org/10.1109/HPEC55821.2022.9926353
https://doi.org/10.1109/JSTSP.2021.3051231
https://doi.org/10.1109/JSTSP.2021.3051231
https://doi.org/10.1103/physrevlett.128.030501
https://arxiv.org/abs/2306.14887
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.org/10.1109/TC.2011.114
https://doi.org/10.1109/TC.2011.114
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.23919/DATE.2019.8714836
https://doi.org/10.23919/DATE.2019.8714836
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.22331/q-2018-08-06-79
https://books.google.pt/books?id=0Yx5VzaMYm8C
https://books.google.pt/books?id=0Yx5VzaMYm8C
https://doi.org/10.1103/physreva.77.032323
https://doi.org/10.1103/physreva.77.032323
https://doi.org/10.5281/zenodo.7465577
https://quantumai.google/reference/python/cirq/Simulator
https://quantumai.google/reference/python/cirq/Simulator
https://quantumai.google/reference/python/cirq/Simulator

12

[66] Quantum AI team and collaborators, qsim, qsimh (2020).
[67] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-

mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-
lor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo,
M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Shep-

pard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, Array programming with NumPy,
Nature 585, 357 (2020).

[68] Microsoft, What are Q# and the Quantum Development
Kit? (2023), https://learn.microsoft.com/en-gb/

azure/quantum/overview-what-is-qsharp-and-qdk.

https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.1038/s41586-020-2649-2
https://learn.microsoft.com/en-gb/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-gb/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-gb/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-gb/azure/quantum/overview-what-is-qsharp-and-qdk

	Survey on quantum circuit simulators
	Abstract
	Introduction
	Quantum computation fundamentals
	State vector
	Density matrix
	Quantum circuits

	Simulation techniques
	Strong simulation vs. weak simulation
	Clifford circuits and the Gottesman-Knill theorem
	Schrödinger simulation
	Feynman simulation
	Schrödinger-Feynman simulation
	Tensor network simulation
	Noise simulation

	Simulation software
	Methodology
	Simulators
	Cirq (internal/qsim/qsimh simulators)
	Microsoft Quantum
	Qiskit
	qFlex
	quimb
	Rigetti Forest
	NVIDIA cuStateVec
	NVIDIA cuTensorNet
	Amazon SV1
	Amazon TN1
	Amazon DM1
	MQT/DDSIM
	Intel Quantum Simulator
	Xanadu's Strawberry Fields
	Pennylane Lightning
	Qibo
	QCGPU
	Quantum++

	Delayed measurement
	References

